

How to Measure carbon? Start your journey today

Martin Gouda, Partner Niels Prins, Consultant

BCI Global Postbus 1456 6501 BL Nijmegen Tel.nr. : +31 (0) 24 379 0222 Mobiel : +31 (0) 6 1555 0112 E-mail : Niels.Prins@bciglobal.com

Nijmegen, April 2023

Contents

- 1 Introduction to BCI Global
- **2** Background of carbon and changing European regulations
- 3 The first step: How to create visibility
- 4 From emissions modelling to emissions accounting
- 5 Overall conclusions
- 6 Contact details

Introduction to BCI Global

Profile

- 38 years in business
- Leading International specialized consulting and implementation firm
- Global presence
- Access to over 200 Supply Chain Professionals across the globe
- Worked in more than 50 countries on 5 continents
- Worked for 50%+ of Gartner's Top 25

York, USA Atlanta, USA

Forbes

Sao Paulo, BR

WORLD'S BEST

MANAGEMENT

Forbes

Los Angeles, USA

AMERICA'S BEST

MANAGEMENT

Shanghai, China

Singapore

Our Industries Segments and Clients

2 Background of carbon and changing European regulations

Торіс	Timeline	Remark(s)
Corporate Sustainability Reporting Directive (CSRD)	2022 2023 2024 2025	Adoption by the European Parliament Preparing data sources Start of measuring emissions First report to be published (on 2024 numbers)
Carbon Border Adjustment Mechanism (CBAM)	2024 2025	Expansion of product scope to chemicals and polymers Expansion of product scope to other products Centralizing of central EU CBAM authority
EU ETS in Freight Transport	2030-ish	Expanding cap and trade emission rights system from production to transportation companies as well – resulting in 'the costs of carbon'

All with the same purpose: "To keep global warming to no more than 1.5°C" (Paris Agreement, 2015)

Zooming in: emissions scope and supply chain partners

Source: ISO14083 on GHG emission quantification in freight transport and hub operations, ISO, 2022

3 The first step: How to create visibility

1 Footprint baseline	2 Calculate	3 Model results	4 Carbon strategy
Start by creating yourfootprint baseline 3C:1 Carbon footprint2 Costs3 Customer	Calculate your baseline including carbon footprint	Determine the most sensitive carbon areas of your supply chain	Prioritize and create your carbon reduction agenda

What's the added value of measuring 3C?

- 1 Measuring of environmental impact
- 2 Competitive advantage
- 3 Identifying cost savings
- 4 Identifying service performance opportunities
- 5 Regulatory compliance

Start by creating your footprint baseline: a Fashion example

Calculate your baseline

								Ir	bound	ound Warehousing CDC				Outbound					
												Variable blue	Space Costs-		Costs				
						Volume		Inbound	Carbon	Leadtim	Fixed WC	collar labour	Fixed	Carbon(ton	(replen to X-				
UID	Origin	Market	X-dock city	Volume shar	Country shar	break-down	Inbound mai	transport Costs	(ton)	e	labour costs	costs	warehousing(m2))	Dock	arbon(ton)	Costs final mile	Carbon final mile (ton)	Leadtime
	1 CN	DE	Kassel	19%	25%	0,48%	Air	€ 145.483,59	514	3	€ 4.901	€ 31.507	€ 20.4 84,38		2.56 17	4	€ 46.550,00	19	1
	2 CN	AT	Linz	3%	25%	0,08%	Air	€ 22.971,09	81	3	€ 774	€ 4.975		2	£ 1.252,39	2	€ 6.300,00	2	2
	3 CN	CH	Basel	3%	25%	0,08%	Air	€ 22.971,09	81	3	€ 74	€ 4.9)5	3 234,58	2	€ 884,04	1	€ 6.300,00	2	2
	4 CN	FR	Paris	18%	25%	0,45%	Air	€ 137.826,56	487		€ 4.6 43	4 25.54 9	€ 19.406,25	11	€ 4.420,20	7	€ 47.250,00	39	2
	5 CN	ES	Madrid	14%	25%	0,35%	Air	€ 107.198,4	319	M 3	3.611	€ 23.216	€ 15.093,75	9	€ 12.032,75	19	€ 41.650,00	24	4
	6 CN	PT	Lisbon	4%	25%	0,10%	Air	5 0.0 28,13		3	€ 1.032	€ 6.633	€ 4.312,50	2	€ 4.321,97	7	€ 11.200,00	3	5
	7 CN	GB	London	15%	25%	0.38%		£ 1. 5,47	406	3	€ 3.869	€ 24.874	€ 16.171,88	9	€ 3.683,50	6	€ 39.375,00	15	2
	B CN	IT	Milano	15%	25%	0,7.%	4jr	114.855,47	406	3	€ 3.869	€ 24.874	€ 16.171,88	9	€ 5.156,89	8	€ 36.750,00	48	2
	9 CN	BE	Brussels	5%	25%	0,11%	Air	€ 34.456,64	122	3	€ 1.161	€ 7.462	€ 4.851,56	3	€ 442,02	1	€ 8.662,50	2	1
1	D CN	NL	Venlo	5%	25%	0,11%	Air	€ 34.456,64	122	3	€ 1.161	€ 7.462	€ 4.851,56	3	€ 11,05	0	€ 7.402,50	4	1
1	1 VN	DE	Kassel	19%	30%	0,57%	Air	€ 206.322,19	728	3	€ 5.881	€ 37.808	€ 24.581,25	14	€ 3.079,40	5	€ 55.860,00	23	1

In the model, you need to consider:

- Volumes coming in and out
- Different transport modalities
- Cost structures for different supply chain parts (transport versus warehousing)
- Lead-times for different supply chain parts
- The right emission CPIs (Carbon Performance Indicator)

Example CPIs for different modalities

Modality	Remark	Туре	Capacity Example route		Used parameter (gr. CO2e / ton*km)	
	Long distance (> 6.000 km)	Belly freight	60 ton	MFG USA -> CDC Venlo	572	
Air ireight	Long distance (> 6.000 km)	Full Freighter	111 ton	MFG China -> CDC Venlo	525	

The results of your carbon modelling

Origin of carbon emission (standard warehouse, economy service)

Areas of impact according the modelling exercise

~55% of emissions are **inbound airfreight** & **last mile** related

To keep in mind

• Only 10% of volumes (KGs) travel via air

Remarks

- A green warehouse is often considered 'the solution'
- Even though it helps, it might not be the impact you're looking for

Conclusion

- Now you know the ballpark of your emissions
- Top impact: Air freight and final mile delivery

Create your carbon strategy

Inbound air freight and final mile distribution have been identified as largest fields of impact, followed by facilities

Level of measure	Example measures	Agenda
Strategic	 Redesign of SC network footprint (near-shoring) Green (warehouse) facilities 	2024 Q1 2023 Q3
Tactical	 Modal shift (air-ocean) Order and service policy aligning 	2023 Q2 Etc.
Operational office	 Consolidation of multiple orders Harmonizing service levels / lead-times 	
Operational 'in the field'	1 Driving awareness and behaviour	

4 From emissions modelling to emissions accounting

Accounting, in the near future, will become the standard. How do you get there?

Move from	То
Generalized SC archetypes	The blueprint of your supply chain
Common warehouse locations	Your geo-locations
Averaged indicators for modalities	Your use of natural gas, diesel, and gasoline
Country-based emissions per m2	Your energy suppliers' invoices
Product-split assumptions	Your SKU 'recipe' (BOM)
Averages for carbon origin	In-depth analysis of your compounds
Emissions associated with plants	Emissions allocated to your SKUs, per period

Scope of emissions accounting

Added CO₂ per unit shipped output based on measured data (shipments, fuel used)

Calculating and allocating:

- Own emissions
- Upstream emissions
- Downstream emissions
- Emissions per product

Similar to the principles of VAT

Combined inputs for a corporate carbon footprint

Main question: how to assign emissions to products to identify reduction opportunities?

- > Assigning of emissions to products is possible, you have the majority on data already
- Majority of emissions are scope 3 (indirect from partners (transport, supply))
- Partners are crucial in your Roadmap to Net Zero you will need their data too

What can we learn?

5 Overall conclusions

- Modelling your supply chain helps in determining impact
- Your supply chain network design impacts not only costs and service levels but carbon footprint as well
- Part of the required data is available in-house
- Part of the required data needs to be provided by partners this can be a challenge
- Real estate does not necessarily impact your carbon footprint on large scale
- New measuring methods help you to become aware and compliant
- Different supply chain parts require measures. Not all of them are transport or asset related

What's next? Towards Compliant Carbon Measuring Α В С D E Modelling assessment & Detailed site accounting Detailed transport accounting Dashboard and overview Compliant reporting Strategic agenda **Key Activities** Validation of flows, data and Site visit and supply chain Identifying required data and Connecting the data to Reporting reflecting your supply supply chain partners partners to provide the data dashboarding for insights chain and its carbon emissions mapping Populating facility model to Entering the data into the right Populating model with supply Reporting in line with the capture flows and consumption chain parts and locations (validated) tooling regulations from chapter 2 Reporting on the facility (/-ies)

as part of the total supply chain

6 Contact details

BCI Global

Niels Prins, Consultant
 +316 15550112

Niels.Prins@bciglobal.com

Headquarters:

Kerkenbos 10-31 6501 BL Nijmegen The Netherlands Phone: +31-24-3790222 Fax: +31-24-3790120

Website: www.bciglobal.com